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Motivation

* High level goal: Enable the industry to harness emerging tools
and devices to conduct M&YV at dramatically lower cost, with
comparable or improved accuracy — M&V 2.0
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M&YV Use Case
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The Relationship Between M&V and EM&V

« M&YV gquantifies site, project-specific and program level gross
energy savings

« EMA&YV evaluates according to policy goals, considering things
like attribution, free ridership, code and standard baselines,
and incremental costs, to quantify net energy savings

* M&V is only one part of EM&V
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Industry Trends, Overarching Context

* |ncreased access to data via smart meters, devices, and
analytics tools

* Performance based outcomes, incentives, codes

* |nterest in multi-measure whole-building programs that
can generate deeper savings

— traditional M&V approaches can become too complicated or
expensive

e Desire to reduce time, cost, complexity of M&V, and EM&V
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Automated “M&V 2.0” Is Here

Automated M&YV is beginning to be offered in energy
management and information systems

Baselines are automatically created using historic interval meter
data (system level or whole-building) and weather data feeds

User enters the date of ECM
implementation, savings
automatically calculated
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Automated M&V May Use Interval, Daily, Monthly
Data

I
Readings Degree days
Baseline Cooling Load
Actual
O O O .
Example at left from Noesis
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What Questions Are Being Asked*?

* How can we reduce the time and costs necessary to quantify savings?

e How can | determine whether a given model or commercial tool is robust
and accurate?

* How can | compare and contrast proprietary tools and ‘open’ modeling
methods for M&V?

* What repeatable test procedures can be used to evaluate model and tool
performance, and which metrics provide critical performance insights?

e Can | use a whole-building approach for my programs and projects?

*These are all questions asked before a project is conducted; after a project,
we want to know how much was saved, what was the uncertainty, how
confident are we in those savings? PERRELEN AR




What Have We Done to Address These Questions?

* Developed a testing procedure to quantify baseline model
accuracy

* Solicited new interval baseline models from industry, tools,
and academic communities

* Applied the test procedure to evaluate performance of 10
baseline models

 Worked with advisory group, utility program managers to
identify most critical performance metrics for M&V

* Developed conclusions regarding potential for wider adoption
of AMI data + analytics for M&V
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Value Proposition

* Transparent statistical tests and metrics can be used to
evaluate automated baseline methods, tools

— To determine and compare accuracy of both proprietary and
‘open’ methods

* Objective performance assessment methodology can
provide a win/win/win
— Allow vendors to retain proprietary IP underlying the algorithms
— Allow users to gauge performance of the tool/approach

— Provide evidence, confidence needed for scaled deployment,
widespread adoption

Baseline

Baseline Method
Method A B



Scope of Work, Results To-Date

 Whole-building avoided energy use calculations, IPMVP Option C,
interval data

— prior work addressed models used for monthly data

— test procedure can also be applied to models used for DR savings, Option
B retrofit isolation, energy anomaly/fault detection

« MA&YV focus, not yet EM&V, attribution, code baseline, net to gross ...

e Streamlining and scaling M&V in practice:
— Analysis of fully automated baseline model capabilities

— Establishes a floor of performance that can be improved by the oversight
of engineer, used to reduce costs and time

Traditional, Manual Semi-automated, with

M&V Engineer Fully Automated M&V
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Baseline Model Testing Procedure
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How Accurate is the Baseline Model?

M&YV Use Case
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Testing Procedure

Model Compare Assess
* Split data set into Compare
training & prediction oredicted data to
Baseline Model o
paflle actual data that Calculate
* Train the model by was ‘hidden’ from Performance
showing data, hiding —> model to quantify —> Metrics, e.g.
Test Data*: prediction-period error %Error, R?,
Many buildings, data CV(RMSE) ...
metered data « Generate post- Repegt for many
period predictions buildings

*No efficiency
interventions



Whole-building kWh
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Metered building data, no known efficiency measures, interventions (green)
Model predictions (orange) are compared to actual meter data (green)
Repeat for hundreds of buildings to understand overall model accuracy,
fraction of buildings for which errors are small vs. large

Repeat for many models to understand relative model performance
Shorten training/prediction periods to understand impact on accuracy when
length of measure pre-, post- period is changed
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Questions On Motivation, Scope, or Testing
Procedure?

(Please type into the webex conference interface)




Interval Data Baseline Models Tested
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Description of Interval Data Models Using Time,
Outside Air Temperature

« M1. Combination principle component analysis and bin modeling, developed by Buildings
Alive Pty. Ltd. of Sydney Australia.

« MZ2. Combination Random Forest, Extra-Trees (extremely randomized trees) and Mean Week,
developed by Paul Raftery and Tyler Hoyt at the Center for the Built Environment, University
of California, Berkeley.

 Ma3. Advanced regression including a term for drift, developed by Gridium Inc.

* MA4. Mean Week! - predictions depend on day and time only. For example, the prediction for
Tuesday at 3 PM is the average of all of the data for Tuesdays at 3 PM.

* MS5. Time-of-Week-and-Temperature? - the predicted load is a sum of (1) a “time of week
effect, and (2) a piecewise-continuous effect of temperature. The temperature effect is
estimated separately for periods of the day with high and low load, to capture different
temperature slopes for occupied and unoccupied building modes.

1. Granderson, et al. Assessment of automated measurement and verification (M&V) methods. Lawrence
Berkeley National Laboratory, July 2015, LBNL#-187225.

2. Mathieu, J.L., P.N. Price, S. Kiliccote, & M.A. Piette. Quantifying Changes in Building Electricity Use, With
Application to Demand Response. SmartGrid, IEEE Transactions, vol. 2, Issue 3, pp.507-518. August 2011. :n—rxn—lﬂ
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Description of Interval Data Models

M6. Weighted Time-of-Week-and-Temperature? - the Time-of-Week and-
Temperature model with a weighting factor to give more statistical weight
to days that are nearby to the day being predicted.

M7. Ensemble approach combining nearest neighbors and a generalized
linear model, developed by Lucid Design Group.

M8. Combination Multivariate Adaptive Regression Splines (MARS) and
other advanced regression

M9. Combination bin modeling and other advanced regression, developed
by Performance Systems Development of New York, LLC.

M10. Nearest neighbor advanced regression

3. Piette, M.A., Brown R.E., Price P.N., Page, J., Granderson, J., Riess, D., et al. (2013). Automated measurement \
and signaling systems for the transactional network. Lawrence Berkeley National Laboratory, December 2013. AN AN S r
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* Based on 12 month training period, run on iMac 3.5GHz Quad Core i7

Model Run Times™

Model

Less than 5 min

More than 30 min

More than 1 hour

M1

X

M2

M3

M4

M5

M6

X| X| X| X

M7

M8

M9

M10
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Analysis Methodology




Summary of Analyses

* Predictions generated for 12-month prediction/post
period
— Using 12-, 9-, 6-, and 3-month training/pre periods

e Standard practice and guidance for whole-building
M&V is 12 months pre/post




Characterization of Test Dataset

e 537 commercial buildings
— 15-minute electric load data
— QOutside air temperature based on zip code

* No known efficiency interventions, significant
changes in operations, occupancy




Characterization of Test Dataset

ASHRAE Climate Zone 1 2 3 4 5 6 7
(Very Hot) (Hot) (Warm) | (Mixed) [ (Cool) (Cold) (Very Cold)

Number of Buildings
analyzed to-date

1 15 277 237 5 1 1

Marine (C) Dry (B) Moist (A)

Warm-Humid
below white line

US Map with ASHRAE-IECC Climate Zones ,f:,}l i
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Performance Metrics of Focus

Many possible goodness of fit metrics to choose from
— different insights into performance accuracy
— but also high degree of overlap

Analyzing too many metrics makes it hard to draw
conclusions about model performance

~20 representatives from efficiency program
management evaluation, implementation voted on top
two metrics of choice for M&V use case

There actually was strong consensus!

BERKELEY LAB

Lawrence Borkeley National Laboratory



Two Primary Performance Metrics

. . =3 (i-91)
Normalized mean bias error, NMBE = : X100
A mimny
CV of the root mean squared error, CV(RMSE) = ; X100

Provide a complement in understanding model performance

NMBE is total percent difference between predicted and
actual energy use

CV(RMSE) indicates model’s ability to predict the overall load
shape

e familiar to practitioners

e prominent in resources such as ASHRAE Guideline 14 BERKELEY LAB
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Questions On Models, Data, or Metrics?

(Please type into the webex conference interface)




Model Accuracy Results
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Form of the Results

To get a sense of general, overall model accuracy, we look
at prediction errors across many buildings

Some buildings are predicted with very little error, some
buildings with higher error

So we consider distributions/percentiles of errors, as in
standardized test scores

— Median is the midpoint, or “average”: errors for 50% of the
buildings are higher, and for 50% of the buildings are lower

— Half of the population falls between the 25t and 75t percentile
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Percent Error (NMBE

NMBE (N=441) 12 month training
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What Do These Distributions Of Percent Errors Tell Us?

* Differences between models are mostly small
e Across all models, for 12-month training
* Average median percent error ~-1.2%

* Range of median errors is ~-3% to 0.4%

* No clear “winner” across models and training periods — all are good, especially for the
case of 12-months training

NMBE (N=441) 12 month training NMBE (N=470) 9 month training

e

Ms 3
model

NMBE (N=537) 3 month trainin,

225
25 250
Ul MeoMe M ws oWe W7 Ms Mo w0 M1 Mz Mg Mi0
0 9
15.0- 15.0
125- 125
100~ 10.0
75- 75
50- 50
25- 25
00- 00
-25- R -25
-5.0- 4 50
-75- 2 75
-100
1 -125
. -150
-17.5- -175 (]
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What Happens As We Shorten the Training Period?

T
Model Model Training Period
12 months 9 months 6 months 3 months

M1 -1.7 -2.02 -4.19 -12.77
M2 -0.63 -0.68 -0.73 1.3
M3 0.35 -0.2 -0.67 -0.17
M4 -1.93 -1.07 -2.22 -2.66
M5 -1.25 -1.26 -1.79 0.21
M6 -0.73 -0.92 -0.88 -0.81
M7 -2.97 -2.62 -3.57 -3.19
M8 -0.51 -0.88 -0.36 1.38
M9 -1.1 -0.98 -1.65 -3.5
M10 -0.32 -0.55 -0.84 1.14

Avg. of Absolute 1.15 1.12 1.69 2.71

Median Values

e Difference in errors between 12- and 9-months training is small

* For (some) models, accuracy begins to degrade when training period
shortened to 6 months, more when shortened to 3 months

 Some models are more robust to shorter training periods

BERKELEY LAB
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CV(RMSE), Daily Energy Totals

CVRMSE (N=441) 12 month training
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CV(RMSE), ASHRAE Guideline 14

 ASHRAE Guideline 14 is the industry’s reference on minimum
acceptable levels of performance for measurement-based energy
and demand savings in commercial transactions

 Models analyzed are likely to meet the Guideline 14 requirements

* Guideline 14 specifies CV(RMSE) during the training® period, should
be <25%

* |n this study

— Median CV(RMSE) for daily energy totals was <25% for every model, when
twelve months of training data were used

— This was true even when only 6 months of training data were used

4. For acase of 12-month post/prediction data, where no uncertainty analysis is to be conducted
5. This study computed CV(RMSE) during the prediction period — which is expected to be even higher than that for the training period. BERKELEY LAB
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Both Metrics Considered Simultaneously: Is There a
Clear “Winner”?

Median NMBE vs. Median CVRMSE for 12 month training Median NMBE vs. Median CVRMSE for 9 month training
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Conclusions, Implications
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Key Takeaways

AMI data and interval data models/tools hold great promise to
scale adoption of whole-building measured savings calculations

— Reducing time and costs, improving or maintaining accuracy

Errors in predicting energy are on the order of a couple of percent
for many buildings and many models

— This is the floor of performance from the fully automated case, with
no ‘non-routine’ adjustments from an engineer

— Oversight of an engineer could improve accuracy even further

12 months pre/post data may not always be required for accurate
whole-building M&V

Models effectively meet ASHRAE guidelines in most cases

BERKELEY LAB
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How Can You Use These Results: A Call to Action!

* Increase the use of these M&V methods
— This study provides objective evidence that M&V models/tools are generally robust

— This study provides accuracy insights that are not generally possible for deemed or
stipulated savings

* Apply this test procedure and metrics to evaluate new tools/models
— Use these results as a comparative benchmark
— Consider accuracy and uncertainty requirements -- how good is good enough?
— Pre-screen, or target the buildings in a population that are most predictable with
the smallest errors

* Vet project-specific M&V plans
— Use these findings to estimate expected ranges of uncertainty and confidence in

reported savings
— We can now be more precise than general guidelines that whole building M&V

requires 12 months pre/post data, and 10% savings or greater

39



Concluding Thoughts

* Growing availability of intelligent analytics tools, and metered
building energy data present a tremendous opportunity for
our industry

— Leading-edge adopters already making powerful use of the technology

 The same technologies that drive significant savings also
promise the ability to verify those savings

— A win for the scaled adoption of cost-effective energy efficiency

— Transparency and evidence that savings are achieved, value is
delivered

— Persistence of savings through continuous data-driven energy
management

Lawrence Berkeley National Laboratory



Questions On Results or Conclusions?

(Please type into the webex conference interface)
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Ongoing and Future Work
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Ongoing Work

 Demonstration of automated approaches with utilities/
programs, and implementers or analytics vendors

— Use data from buildings that have participated in whole-building
(preferably) programs or pilots

— Apply automated M&V alongside whatever M&V plan was/is already
in place

— Quantify savings with uncertainty and confidence
— Publish and case studies on effectiveness

We are currently seeking utility/program and implementer or vendor
partners who are interested in collaborating in this work. Please contact

JGranderson@Ibl.gov if you are interested in exploring this opportunity.

Lawrence Berkeley National Laboratory



Future Work

* Continued engagement of evaluator, program manager, and
implementer communities

— Collectively define uncertainty and confidence requirements for
reporting gross energy savings

— Provide critical information necessary for adoption

* Transfer of test procedure to stakeholders, and industry bodies
— interest from CA state, ASHRAE, utility community

BERKELEY LAB



Discussion?

(Please use the webex conference
interface to raise your ‘hand’)
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Thank You!

For more information please contact Jessica Granderson
JGranderson@Ibl.gov, 510.486.6792
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Appendix: Scenario Uncertainty Analyses to Vet
M&V Plans




Vetting Project-Specific M&V Plans

e Although not common today, uncertainty analysis
supports evaluation and reduction of project and
investment risk

— E.g., savings = 12%, +/- 2%, with 80% confidence

* Before a project or program is launched, the M&V

plan can be evaluated to understand expected
ranges of uncertainties




Scenario Analysis

e Suppose your whole-building program is targeting 10-20%
savings

* And you require 68% confidence in reporting those savings
(ASHRAE levels)

* You want to know, before conducting the projects, whether
your planned approach has any chance of meeting your
requirements

— You would like to use the time of week and temp. regression model
— You want to use 12 months of 15-minute pre/post data

BERKELEY LAB



Scenario Analysis Using Results from Real Buildings

e For a set of CA buildings and the model of interest*
CV(RMSE) are:

— 0.151 in the median building
— 0.087 in the best 20% of buildings
— 0.068 in the best 10% of buildings

* Apply ASHRAE Guideline 14 (2002) equation for
fractional savings uncertainty

— Note that the 2014 version of Guideline 14 presents a
modified formulation of this concept

* 15-min model and 15-min predictions; predictions rolled into daily ;}ﬂ
energy totals from which CV(RMSE) was computed e




68% Confidence, Uncertainty Ranges

A
CV(RMSE) Fractional Savings Uncertainties
10% 20%
0.151 for median 0.100 0.050
building
0.087 for best 20% of 0.058 0.029
buildings

* Fractional energy savings uncertainty in best 20% of
buildings would range 0.058 to 0.029
* 10% savings +/-3% and 20% savings +/- 1.4%
* At 68% confidence

* Fractional energy savings uncertainty in a median building
would range 0.1 to 0.05

* 10% savings +/-5% and 20% savings +/- 2.5% /Q\Iﬂ
* At 68% confidence BERKELEY LAB
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What If You Wanted to Shorten the Post Period to 6

Months?
.
CV(RMSE) F
10% 20%
0.151 for median 0.141 0.071
building
0.087 for best 20% of | 0.081 0.041
buildings

* Fractional energy savings uncertainty in best 20% of
buildings would range 0.081 to 0.041
* 10% savings +/-4% and 20% savings +/- 2%
* At 68% confidence

* Fractional energy savings uncertainty in a median building
would range 0.141 to 0.071

* 10% savings +/-7% and 20% savings +/- 3.5% /2\|ﬂ
At 68% confidence BERKELEY LAB




